[ID 172] CORN PRODUCTIVITY PREDICTION IN THE CERRADO REGION USING SATELLITE IMAGES

Authors

  • Eduardo Vicente de Oliveira Centro Universitário do Cerrado de Patrocínio - UNICERP
  • português português português
  • português português português

Keywords:

NDVI, Precision agriculture, Corn, Prediction

Abstract

INTRODUCTION: Currently, there is a growing demand for modernization with regard to food production in the world. Precision Agriculture has been standing out in this scenario for offering useful information so that a high rate of production and added value can be achieved, especially in this project, the production of corn. OBJECTIVE: In this work, the objective was to evaluate the temporal behavior of the NDVI and its relationship with the productivity of the maize crop in order to generate productivity prediction models in plant populations and create a crop prediction model for the maize crop. MATERIAL AND METHODS: An image was acquired from the MSI-Sentinel 2 sensor, from the mapping of slope forms (Topodata) to generate vegetation indices, the temporal relationship of these indices with productive parameters of the culture was made. Manual analysis was performed at 20 points within the area. The analysis of results was made from the statistical description and literary basis. Only open software was used. RESULTS: Using regression analysis, the correlation of NDVI, manual average and the productivity obtained was compared, in addition, the variation of NDVI values ​​around a 15-meter area was compared to compare how variable was the result of the worked area. In the project. CONCLUSION: It was possible to observe that there was no correlation, however, analyzing each of the sampling points and the variation of the NDVI values ​​around in a radius of 15 meters, another result was found, the greater the variation, the greater the index of productivity.

References

CONAB; Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos – (2022) – Brasília: Conab, 2022. Disponível em: http://www.conab.gov.br ISSN 2318-6852.

BACH, Celso Luiz; NESI, Cristiano Nunes; TAFFAREL, Elvys; CHIAPINOTTO, Ivan Carlos. Meotodologia para estimativa de produtividade em lavouras de milho, trigo, sorgo e feijão. Boletim Técnico No 193 - Epagri, [S. l.], 2014.

BARBOSA, Claudio C. F.; NOVO, Evlyn M. L. M.; MARTINS, Vitor S. Introdução ao Sensoriamento Remoto. [s.l: s.n.]. Disponível em: www.inpe.br.

BECKER, Willyan Ronaldo; CAON, Ivã Luis; CATTANI, Carlos Eduardo Vizzotto; MERCANTE, Erivelto; JOHANN, Jerry Adriani; GANASCINI, Diandra; PRUDENTE, Victor Hugo Rohden. Mediana E Desvio Padrão Do Perfil Espectro-Temporal De Ndvi Como Parametros De Classificação. Anais do XIX Simpósio Brasileiro de Sensoriamento Remoto, [S. l.], p. 1–4, 2019. Disponível em: https://proceedings.science/sbsr-2019/papers/mediana-e-desvio-padrao-do-perfil-espectro-temporal-de-ndvi-como-parametros-de-classificacao.

BÉGUÉ, Agnès et al. Remote sensing and cropping practices: A review. Remote Sensing, [S. l.], v. 10, n. 1, p. 1–32, 2018. DOI: 10.3390/rs10010099.

BERTOLIN, Natalia de Oliveira; FILGUEIRAS, Roberto; VENANCIO, Luan Peroni; MANTOVANI, Everardo Chartuni. Predição Da Produtividade De Milho Irrigado Com Auxílio De Imagens De Satélite. Revista Brasileira de Agricultura Irrigada, [S. l.], v. 11, n. 4, p. 1627–1638, 2017. DOI: 10.7127/rbai.v11n400567.

DE SOUZA, Aguinaldo Eduardo; DOS REIS, João Gilberto Mendes; RAYMUNDO, Julio Cezar; PINTO, Roberta Soral. Estudo Da Produção Do Milho No Brasil. South American Development Society Journal, [S. l.], v. 4, n. 11, p. 182, 2018. DOI: 10.24325/issn.2446-5763.v4i11p182-194.

FONTANA1, Denise Cybis; SANTOS, Leonardo Nascimento Do; DALMAGO, Genei Antonio; SCHIRMBECK, Juliano; SCHIRMBECK, Lucimara. NDVI E ALGUNS FATORES DE VARIABILIDADE. Anais do simpóisio brasileiro de sensoriamento remoto, [S. l.], p. 1–4, 2019.

GITELSON, Anatoly A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. Journal of Plant Physiology, [S. l.], v. 161, n. 2, p. 165–173, 2004. DOI: 10.1078/0176-1617-01176.

GUTTERRES, Daniele; OGLIARI, Pinto; FONTANA, Denise Cybis; BREMM, Carolina; FACCIO, Paulo César De. Ndvi Como Indicador De Diferenças Na Estrutura Da Vegetação Em Pastagens Naturais Do Bioma Pampa. Anais do XIX Simpósio Brasileiro de Sensoriamento Remoto, [S. l.], p. 1311–1314, 2019.

MATIAS, João Fillipe Generoso; STRECK, Luciano; AGUILAR, Damian Dulau. Geração de mapas de produtividade de milho (Zea mays) com índice de vegetação NDVI de imagens Landsat 8. Anais XVII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, [S. l.], n. 2009, p. 157–162, 2015. Disponível em: http://www.dsr.inpe.br/sbsr2015/files/p0035.pdf.

MOLIN, José Paulo. Geração E Interpretação De Mapas De Produtividade Para Agricultura De Precisão. [S. l.], v. 58, n. 12, p. 7250–7, 2014. Disponível em: http://www.ler.esalq.usp.br/download/CLP 2000.01.PDF.

OLIVEIRA, Mailson Freire De. Modelos de predição de produtividade da cultura do milho por meio de NDVI em arranjos espaciais. [S. l.], p. 44, 2017.

TEAL, R. K.; TUBANA, B.; GIRMA, K.; FREEMAN, K. W.; ARNALL, D. B.; WALSH, O.; RAUN, W. R. In-season prediction of corn grain yield potential using normalized difference vegetation index. Agronomy Journal, [S. l.], v. 98, n. 6, p. 1488–1494, 2006. DOI: 10.2134/agronj2006.0103.

WALL, Lenny; LAROCQUE, Denis; LÉGER, Pierre Majorique. The early explanatory power of NDVI in crop yield modelling. International Journal of Remote Sensing, [S. l.], v. 29, n. 8, p. 2211–2225, 2008. DOI: 10.1080/01431160701395252.

ZHANG, Naiqian; WANG, Maohua; WANG, Ning. Precision agriculture - A worldwide overview. In: COMPUTERS AND ELECTRONICS IN AGRICULTURE 2002, Anais [...]. : Elsevier, 2002. p. 113–132. DOI: 10.1016/S0168-1699(02)00096-0.

Published

2023-03-10

How to Cite

de Oliveira, E. V., português, português, & português, português. (2023). [ID 172] CORN PRODUCTIVITY PREDICTION IN THE CERRADO REGION USING SATELLITE IMAGES. Revista Vitae Educação, Saúde & Meio Ambiente, 1(12), 671–681. Retrieved from https://revistas.unicerp.edu.br/index.php/vitae/article/view/2525-2771-v1n12-7

Issue

Section

Artigos